
TCAM-SSD: A Framework for Search-Based Computing in Solid-State Drives

Ryan Wong† Nikita Kim‡ Kevin Higgs†

Engin Ipek⋄ Sapan Agarwal▲ Saugata Ghose† Ben Feinberg▲

†Univ. of Illinois Urbana-Champaign ‡Carnegie Mellon Univ. ⋄Samsung ▲Sandia Nat’l. Laboratories

Over the past decade, the amount of data generated and con-
sumed by modern applications has grown exponentially [6],
which induces a large amount of data movement between
processing elements, main memory, and storage. This data
movement has become a major bottleneck in modern systems,
as it consumes large amounts of energy and results in signifi-
cant performance penalties [4]. Processing-in-memory (PIM)
architectures provide a solution to alleviating data movement,
by performing data processing closer to (i.e., near) or directly
inside (i.e., using) memory arrays. While a large amount of
research has explored processing-near-memory (PNM) and
processing-using-memory (PUM) for main memory subsys-
tems, they do not alleviate data movement to storage for appli-
cations with very large datasets.

NAND-flash-based solid-state drives (SSDs) provide an op-
portunity to perform PIM across potentially terabytes of data
per drive. Unfortunately, existing PNM and PUM solutions
for main memory cannot be directly applied in SSDs, because
(1) the latency–bandwidth trade-off of SSDs is significantly
more skewed towards bandwidth in SSDs, (2) key elements
of the SSD architecture (e.g., firmware-based data manage-
ment, available parallelism in NAND flash memory chips,
flash channel controller) add significant complications com-
pared to bank accesses in main memory, and (3) it is not easy
to scale up the number of PIM logic elements to match the
orders-of-magnitude increase in available data. Existing works
propose either (1) PNM solutions that eliminate host–device
communication but are still bottlenecked by the flash channel
controllers (e.g., [1, 7]), or (2) PUM primitives that perform
bitwise operations inside NAND flash chips but do not study
integration with the SSD firmware and host (e.g., [2, 5, 9]).

In this work, we propose TCAM-SSD, a new framework
for efficient in-SSD search-based computing. TCAM-SSD
utilizes the in-memory search (IMS) primitive [9], which treats
a NAND flash cell array as a bulk ternary content-addressable
memory (TCAM). TCAM-SSD builds a full framework on
top of IMS, providing (1) concurrent support for block reads
and for TCAM search operations, (2) a mechanism to collect
and retrieve search results from the TCAM operation, (3) the
ability to coherently modify searchable data, and (4) a NVMe
2.0 compliant interface for user applications to invoke search
operations. TCAM-SSD requires only lightweight changes
to the peripheral circuitry of NAND flash arrays, and modest
firmware changes to support content-based operations.
IMS Primitive. A single IMS primitive can perform a par-
allel search across all searchable data elements in a single
NAND flash array. The IMS primitive requires data to be
transposed compared to the conventional layout: instead of
storing the bits that belong to the same data element on the
same wordline (i.e., horizontally), IMS stores the bits of the
data element on the same bitline (i.e., vertically). In this trans-
posed layout, a single bit of data is represented by two adjacent
NAND flash cells, which share the same bitline and sit in ad-
jacent rows to one another. IMS uses these two cells to store a
bit value 0 (Figure 1a), a bit value 1 (Figure 1b), or a bit value

Full Paper: https://arxiv.org/abs/2403.06938
SNL is managed and operated by NTESS under DOE NNSA contract DE-
NA0003525.

1

0
BLi

VA

VB

(a) Bit value 0

(c) Searching an array’s data elements for 1X0:
green transistors = on, orange transistors = off

0

1
BLi

VA

VB

(b) Bit value 1

0

1

BL0

Vread

Vpass

1

0Vpass

Vpass

0

1Vpass

Vread

0

1

BL1

0

1

1

0

1

0

BL2

1

0

1

0

1 1 1

0: no match 1: match 0: no match

Bit 0:
check for 1

Bit 1:
match any

Bit 2:
check for 0

Figure 1: Associative search in a NAND flash array.

X (representing a bit that will match either a 0 or a 1; i.e., a
bit that can be ignored). Each cell continues to use the same
Vth states as conventional SLC cells.1 When an IMS primitive
is performed, voltages corresponding to the search data are
applied to the NAND flash cell gates, as shown in Figure 1c.
A bitline output of 1 means that the data element stored in the
bitline is a match; otherwise, the bitline output is a 0.
TCAM-SSD. TCAM-SSD enables both baseline SSD func-
tionality and IMS-based searches by splitting the SSD into
two types of regions. Data regions perform read, program, and
erase commands on horizontal data, identical to a conventional
SSD. Search regions perform IMS-based commands on verti-
cal data elements. For each data element in the search region,
the data region contains a corresponding data entry, whose
contents are application dependent. For example, if an appli-
cation directly wants the value of the matching data element,
its corresponding data entry contains a non-transposed replica
of the value (e.g., to enable fast readout of matching data).
If we want to implement a key–value store (KVS), each data
element in the search region is a key, and its corresponding
entry in the data region holds the value.

Figure 2 shows the front-end interface for TCAM-SSD.
TCAM-SSD aims to use in-SSD search to eliminate two
types of data movement required by conventional drive reads:
(1) CPU–FE (front end), by enabling the SSD to return only
matching pieces of data to the host CPU; and (2) FE–BE (back
end), by performing IMS inside the NAND flash chip and
reading out only matching pieces of data across flash chip
channels. Applications interact with TCAM-SSD through
drive-level commands that we introduce as extensions to the
standard NVMe protocol. One of these commands allocates a
new search region.2 Our modified FTL performs block-level

Flash Translation Layer

Transaction Scheduler

Search Mgr.

Address
Translation

Cache
Manager

H
o

st
–I

n
te

rf
a

ce

La
ye

r

to
/f

ro
m

 h
o

st
 v

ia
 N

V
M

e

DRAM

. . .Link
Table

Cached
Mappings

Write
Cache

Chip Queue

Chip Queue

to
/f

ro
m

 b
a

ck
 e

n
d

 N
A

N
D

 f
la

shFlash
Chip
Ctrl.

Flash
Chip
Ctrl.

Flash
Chip
Ctrl.

. . .1

7

2

3

4

5

6

Figure 2: TCAM-SSD front end (new modules in orange).
1 While TCAM-SSD can make use of multi-level cells, we use SLC, without

loss of generality, to simplify our descriptions.
2 Unlike IMS, which limits the data element length to the number of wordlines

in an array, TCAM-SSD’s firmware supports elements of arbitrary length.

1 SAND2024-02940A

https://arxiv.org/abs/2403.06938

allocation for the search region, and writes data elements ver-
tically to the NAND flash chips. Additional commands update
a data element, and append new data to a search region.

To perform a ternary search (i.e., a search where one or
more bits may be set as don’t care) over one or more search
regions, the application issues a data search command over
NVMe to the firmware (1 in Figure 2). The transaction sched-
uler converts the data search command into chip-level SRCH
commands (2). When our new SRCH command is issued
by the flash chip controller (3), it uses per-wordline read
reference voltages to represent each bit of the search key (or
whether a bit is a don’t care), and passes these voltages to the
NAND flash blocks that contain the requested search regions
requested. The NAND flash blocks, using modified periph-
eral circuitry to support per-wordline voltages, then perform
IMS primitives to concurrently search through thousands of
data elements in the block at once. The output of each bitline
indicates whether the word stored along the bitline is a match.

Combined with block-level parallelism, a single SRCH com-
mand can search over tens of thousands of data elements simul-
taneously. The list of matches is returned to a search manager
that we add to the firmware (4), which uses a metadata table
to decode where the specific data lies (5). The firmware then
schedules and issues read requests for only the matching data
(6), and the matching data is returned to the host (7).
Evaluation. To evaluate TCAM-SSD, we develop a set of
detailed analytical models to capture the low-level hardware
and software modifications to the SSD, as well as all critical as-
pects of the system, including, NVMe initialization overheads,
DRAM access times, and NAND flash access time. TCAM-
SSD can optimize a wide range of application domains that
employ search-based operations. To demonstrate the flexibil-
ity of our framework, we present three use cases: (1) using
in-SSD record filtering to reduce data movement for online
transaction processing (OLTP) in databases; (2) enabling high-
throughput parallel search to accelerate database analytics;
and (3) combining pointers and search operations to retrieve
edge data for large graph analytics.

For OLTP, we run TPC-C on DBx1000 [11] with 1 M trans-
actions and 3 M entries. TCAM-SSD is faster than CPU-
only DBx1000 whenever a query needs to retrieve more than
3 pages from the SSD (Figure 3a). Furthermore, we show the
CDF of total latency contributed by the queries as a function
of disk pages fetched (Figure 3b). TCAM-SSD achieves a
speedup of 60.9%, and reduces CPU–FE and FE–BE data
movement by 92.3% and 77.0%, respectively.

0.0

0.2

0.4

0.6

0.8

1.0

0 24 48 72 96

Cu
m

ul
at

iv
e

Q
ue

rie
s

Disk Pages Fetched

TCAM-SSD Crossover

3
0.0

0.2

0.4

0.6

0.8

1.0

0 24 48 72 96

Cu
m

ul
at

iv
e

La
te

nc
y

Disk Pages Fetched

TCAM-SSD Crossover

3

(a) CDF of queries

0.0

0.2

0.4

0.6

0.8

1.0

0 24 48 72 96

Cu
m

ul
at

iv
e

Q
ue

rie
s

Disk Pages Fetched

TCAM-SSD Crossover

3
0.0

0.2

0.4

0.6

0.8

1.0

0 24 48 72 96

Cu
m

ul
at

iv
e

La
te

nc
y

Disk Pages Fetched

TCAM-SSD Crossover

3

(b) CDF of latency

Figure 3: Cumulative distribution function (CDF) for TPC-C.

For database analytics, we evaluate modified versions of
TPC-H queries [3, 10] that scan one 74 GB table from a
115 GB database populated using DBGEN [8]. We examine
the effects of selectivity (the fraction of database records that
match a query) and locality (how likely records are to share a
NAND flash page). TCAM-SSD speeds up the scan operation
for Query 1 by 18.3×, and for Query 2 by 17.1×, compared
to a baseline database scan operation. This is because TCAM-
SSD reduces both CPU–FE and FE–BE movement by 95%.

Percent Seocality = 0%locality = 5 locality = 100% Percent Seocality = 0%locality = 5 locality = 1
1 0.735941 1.465058 55.16597 1 0.697288 1.318183 10.61796

0.4 18.30298 36.07675 967.489 0.4 17.10094 31.6867 205.1746
0.01 71.36977 140.2816 1637.046 0.01 64.12386 114.7868 455.7593

Query 1

Locality

Query 2

Locality

0.1

1

10

100

1000

1 0.4 0.01

Sp
ee

du
p

Percent Selectivity

locality = 0% locality = 50% locality = 100%

0.1

1

10

100

1000

1 0.4 0.01

Sp
ee

du
p

Percent Selectivity

locality = 0% locality = 50% locality = 100%

(a) Query 1 (y-axis is log scale)

Percent Seocality = 0%locality = 5 locality = 100% Percent Seocality = 0%locality = 5 locality = 1
1 0.735941 1.465058 55.16597 1 0.697288 1.318183 10.61796

0.4 18.30298 36.07675 967.489 0.4 17.10094 31.6867 205.1746
0.01 71.36977 140.2816 1637.046 0.01 64.12386 114.7868 455.7593

Query 1

Locality

Query 2

Locality

0.1

1

10

100

1000

1 0.4 0.01

Sp
ee

du
p

Percent Selectivity

locality = 0% locality = 50% locality = 100%

0.1

1

10

100

1000

1 0.4 0.01

Sp
ee

du
p

Percent Selectivity

locality = 0% locality = 50% locality = 100%

(b) Query 2 (y-axis is log scale)

Figure 4: Speedup for analytical queries with TCAM-SSD, nor-
malized to scan using a conventional SSD.

For graph analytics, we evaluate TCAM-SSD using the
vertex access traversal trace for the SSSP algorithm on a col-
lection of real-world and synthetic graphs ranging from 1.5 M
edges (road-PA) to 1.3 B edges (mag240m). We compare
TCAM to (1) in-memory index (IM), where the LBA of each
vertex’s edge list is stored in memory; and (2) out of mem-
ory (OOM), where both the graph index and edge list resides
on disk. On average, TCAM-SSD reduces in-memory index
metadata by 47.5%, compared to a baseline index with a 4 B
pointer and 4 B of metadata (e.g., vertex weight) per entry
(Figure 5). Overall, TCAM-SSD performs 12.8% better than
OOM on average, as it avoids data movement costs between
the CPU and the SSD.

Dataset IM TCAM-SSD TCAM-256 IM OOM TCAM-NP TCAM-256 IM OOM TCAM (NP)TCAM-256
Patents 1 0.500658 0.500464 0.027017 0.054009 0.0458904 0.0459721 0.500231 1 0.849681 0.851193
Orkut 1 0.500658 0.610146 21.590832 43.18164 42.3473971 40.424626 0.5 1 0.980681 0.936153
YouTube 1 0.5001227 0.518709 7.962593 15.925186 13.5984412 13.6283474 0.5 1 0.853895 0.855773
Road-CA 1 0.5000438 0.500044 13.752533 27.505042 23.3326208 23.3326208 0.5 1 0.848303 0.848303
Road-PA 1 0.5000441 0.500044 7.642588 15.285152 12.9564037 12.9564037 0.500001 1 0.847646 0.847646
Road-TX 1 0.5000435 0.500043 9.494799 18.989573 16.1011377 16.1011377 0.500001 1 0.847894 0.847894
LiveJournal 1 0.5002446 0.518272 30.922354 61.844683 54.9304189 54.7543203 0.5 1 0.8882 0.885352
Kron25 1 0.5009641 0.753572 119.80151 239.60301 262.326424 211.162728 0.5 1 1.094838 0.881302
Twitter 1 0.5005205 0.583196 246.06717 492.13432 475.16021 436.128361 0.5 1 0.965509 0.886198
MAG240M 1 0.5003657 0.508252 334.35192 668.70382 598.073825 598.687618 0.5 1 0.894378 0.895296

1 0.5003664 0.544544 Speedup 0.500023 1 0.907102 0.873511
1.999906 1 1.102411 1.144805

Index (Normalized to IM) Exec Time (Raw) Exec Time (Normalized to OOM)

0.0

0.5

1.0
In

de
x

Si
ze

(n
or

m
al

ize
d

to
 IM

)

IM
TCAM-SSD

0

0.5

1

Ex
ec

ut
io

n
Ti

m
e

(n
or

m
al

ize
d

to

O
O

M
)

IM OOM TCAM (NP) TCAM-256

Figure 5: Graph index overhead, normalized to a conventional
in-memory index.

Conclusion. We present TCAM-SSD, a framework for in-
SSD search-based computing using NAND flash memory.
With modest modifications to the NAND flash chips inside
commodity solid-state drives (and with no modifications to
the NAND flash array), we can enable highly-parallel ternary
search operations. We show that for three use cases, TCAM-
SSD can provide notable performance and data movement
improvements for large dataset processing.

References
[1] Advanced Micro Devices, Inc., “Samsung SmartSSD,”

https://www.xilinx.com/applications/data-center/computational-
storage/smartssd.html, 2021.

[2] C. Gao et al., “ParaBit: Processing Parallel Bitwise Operations in
NAND Flash Memory Based SSDs,” in MICRO, 2021.

[3] B. Gu et al., “Biscuit: A Framework for Near-Data Processing of Big
Data Workloads,” in ISCA, 2016.

[4] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark
Suite for Evaluating Data Movement Bottlenecks,” IEEE Access, 2021.

[5] J. Park et al., “Flash-Cosmos: In-Flash Bulk Bitwise Operations Using
Inherent Computation Capability of NAND Flash Memory,” in MICRO,
2022.

[6] D. Reinsel, J. Gantz, and J. Rydning, “Data Age 2025: The Digitization
of the World From Edge to Core,” IDC, white paper, 2018.

[7] Samsung Electronics Co., Ltd., “Samsung Electronics Develops Second-
Generation SmartSSD Computational Storage Drive With Upgraded
Processing Functionality,” https://news.samsung.com/global/samsung-
electronics-develops-second-generation-smartssd-computational-
storage-drive-with-upgraded-processing-functionality, July 2022.

[8] Transaction Processing Council, “TPC-H DBGEN,” https://github.com/
electrum/tpch-dbgen.

[9] P.-H. Tseng et al., “In-Memory-Searching Architecture Based on 3D-
NAND Technology With Ultra-High Parallelism,” in IEDM, 2020.

[10] L. Woods, Z. István, and G. Alonso, “Ibex—An Intelligent Storage
Engine With Support for Advanced SQL Offloading,” VLDB, 2014.

[11] X. Yu et al., “Staring Into the Abyss: An Evaluation of Concurrency
Control with One Thousand Cores,” Proc. VLDB Endow., Nov. 2014.

2

https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://www.xilinx.com/applications/data-center/computational-storage/smartssd.html
https://news.samsung.com/global/samsung-electronics-develops-second-generation-smartssd-computational-storage-drive-with-upgraded-processing-functionality
https://news.samsung.com/global/samsung-electronics-develops-second-generation-smartssd-computational-storage-drive-with-upgraded-processing-functionality
https://news.samsung.com/global/samsung-electronics-develops-second-generation-smartssd-computational-storage-drive-with-upgraded-processing-functionality
https://github.com/electrum/tpch-dbgen
https://github.com/electrum/tpch-dbgen

