
Improving the Compatibility and Manufacturability of
Digital Architectures for Processing Using Resistive Memory*

Minh S. Q. Truong† Liting Shen† Alexander Glass† Alison Hoffmann†

L. Richard Carley† James A. Bain† Saugata Ghose‡

†Carnegie Mellon University ‡University of Illinois Urbana-Champaign

Many modern applications require frequent data movement
between the CPU and the main memory, which consumes a sig-
nificant amount of energy. To mitigate the cost of data move-
ment, recent works propose a new computing paradigm called
processing-using-memory (PUM), which leverages electrical
interactions between memory cells to realize useful computa-
tion within the memory arrays, without the need for additional
CMOS logic. Compared to adding discrete logic near memory
arrays, PUM eliminates significantly more data movement and
can enable thousands to millions of ways of data-level paral-
lelism [3, 10]. A PUM-capable memory cell can be used as
either (1) a multi-bit device capable of analog operations such
as multiplication (e.g., [1,2]), or (2) a single-bit device capable
of digital operations such as Boolean algebra (e.g., [7, 9, 13]).

While PUM can be implemented using both conventional
(e.g., DRAM, SRAM) and emerging (e.g., MRAM, PCM,
ReRAM)1 memories, prior works build PUM architectures
around a specific memory technology. Unfortunately, this
creates a significant barrier to the development of PUM-based
systems. Due to DRAM scaling issues [8, 11], manufacturers
are hesitant to alter the design of DRAM arrays in fear of hurt-
ing yield, and while SRAM-based PUM avoids such concerns,
it significantly compromises storage density compared to other
memory technologies. Emerging memory technologies offer
the promise of high-density PUM, but issues remain with the
at-scale production of each of them. Given the uncertainty of
which technology will emerge as the dominant replacement for
DRAM, it becomes unclear which of the previously-proposed
PUM architectures will be viable, which in turn prevents sys-
tems developers from solving software-level challenges hold-
ing back the adoption of PUM [3].

In our JETCAS 2022 paper, we aim to decouple PUM ar-
chitectures as much as possible from (1) a specific memory
technology, as well as (2) a specific logic family (e.g., the
MAGIC logic family [6] provides driving voltages and circuit-
level support for either NOR or NAND, while the FELIX logic
family [4] provides this for NOR, NAND, and NOT in the
same array). For this work, we build upon our prior work on
RACER [13], a highly-scalable PUM architecture that effi-
ciently enables MAGIC-NOR-based processing inside small
memory arrays. We start by developing interface circuits that
allow the RACER architecture to be compatible with any PUM
logic family. These circuits ensure that most of RACER’s cir-
cuitry can stay the same as we adapt the architecture to new
logic families and to other resistive memory technologies (in-
cluding both 1S1R-based crossbars and 1T1R-based arrays).

Building upon our technology-agnostic version of RACER,
we seek to design a new logic family that is practical for
the types of memory devices that we can manufacture today.
Unfortunately, the MAGIC and FELIX proposals require con-

*Full Paper: M. S. Q. Truong et al., “Adapting the RACER Architecture
to Integrate Improved In-ReRAM Logic Primitives”, JETCAS, June 2022,
https://ghose.cs.illinois.edu/papers/22jetcas_oscar.pdf

1We use the term resistive memory to refer broadly to resistance-based
non-volatile memories (e.g., PCM, MRAM, ReRAM), while we use ReRAM
to refer specifically to oxide-based switches (often referred to as memristors).

straints for the device switching thresholds that are difficult to
achieve with today’s resistive memory technology prototypes
(as was also recognized by prior work [5, 14]). We propose a
new logic family, OSCAR, that enables NOR and OR using re-
sistive memories with significantly-relaxed constraints, which
are widely compatible with existing device technologies.

Background: RACER Architecture. RACER [13] uses
bit pipelining to achieve high performance with small n×n
ReRAM tiles (e.g., n = 64). A w-bit word is stored across
w tiles as shown in Figure 1. RACER’s bit-serial operations
iteratively apply Boolean logic operations one tile at a time.
To pass intermediate values (e.g., carry-out bits) between tiles,
RACER uses a resistive-memory-based buffer that connects to
a tile using programmable pass gates. This allows tiles to act
as per-bit pipeline stages, while buffers act as pipeline registers
between stages, enabling the concurrent computation of w×n
bit-serial operations. Using MAGIC-based NOR operations in
ReRAM arrays, RACER achieves a 107× speedup and 189×
energy savings compared to a modern 16-core Xeon CPU
for microkernels from a range of important domains (image
processing, linear algebra, signal processing, neural-network-
based classification, string matching).

Figure 1: Tile and buffer design, showing two four-bit values
(1101 in red, 0110 in blue) striped across the tiles.

Technology Interface Circuits. Figure 2a illustrates the nec-
essary circuitry to enable bit-pipelining. The pipeline con-
troller consists of one micro-op queue per tile. Each queue
holds a sequence of micro-ops, which are commands that
tell RACER which Boolean primitive to apply to a set of
columns in the tile. RACER originally directly connected the
pipeline controller to the tiles, and translated each micro-op
to predetermined voltage signals according to the ReRAM-
based MAGIC [6] logic family. Thus, RACER would need
a significant redesign to integrate with a different logic fam-
ily/technology. We address this inflexibility by decoupling
the control circuitry from the tiles using modified decode &
drive units. These units act as interface circuits that allow
RACER to work with other logic families, by isolating the
technology-agnostic aspects of the controller away from the
technology-specific switching voltages.

We design the decode & drive units by observing that for all
existing resistive PUM logic families (e.g., [4, 6, 12]), one of
three voltages is asserted to each column of a tile depending
on its “role": (1) one or two columns that serve as inputs of
the Boolean operation are asserted with Vin; (2) one column
that serves as the output is asserted with Vout; and (3) all other
(i.e., idle) columns are asserted with Vfloat. The values of
these assertion voltages depend on the specific logic family
and on the Boolean operation (e.g., NOR, NAND). Once a
decode & drive unit (Figure 2b) receives a micro-op (1 in the

1

https://ghose.cs.illinois.edu/papers/22jetcas_oscar.pdf

New
Micro-Op

M
ic

ro
-O

p
Qu

eu
e

0

M
ic

ro
-O

p
Qu

eu
e

1

M
ic

ro
-O

p
Qu

eu
e

7

…

Tile 0Tile 1Tile 7 …

…Dr
iv

e

Dr
iv

e

Dr
iv

e

Pipeline Controller

Decode
&

Drive

Decode
&

Drive

Decode
&

Drive

(a) (b)

colA[63]
colA[i]

colB[i]

colC[i]

Vin

Vfloat

Vout

to
 c

ol
um

n
i o

f t
ile

 t

Opcode
Log2(p)b 2b 6b

Col. B
6b

Col. C
6b

Buff. Sel. Col. A1

Col. C
Col. B

Col. A

… colA[0]
colA[1]

Ti
le

 t
De

co
de

rs

2 3

Decode & Drive

(a) (b)
Figure 2: (a) CMOS circuits required to enable bit-pipelining;

(b) the decode & drive interface circuit.

figure) from the micro-op queue, it can determine the assertion
voltages using the micro-op’s opcode field. Each column of
the tile is then assigned a role based on the micro-op’s operand
address fields (2). Once every column is assigned a role (i.e.,
input, output, or idle), the appropriate assertion voltages can
be applied across the tile (3). The decode & drive interface
circuit enables the parameterization of different logic families
(i.e., all logic families are treated in the same way from a
control point of view). This effectively abstracts away any
technology-dependent behavior from the control circuitry, and
from any software building upon the architecture.

OSCAR Logic Family. With the ability to incorporate differ-
ent logic families into RACER, we next explore limitations of
existing logic families. One constraint for enabling logic in
ReRAM is the ratio between Vset and Vreset, threshold voltages
that when applied to a resistive device set it to a low-resistance
or high-resistance state, respectively. Unfortunately, while
the MAGIC [6] and FELIX [4] logic families require devices
where Vset < 2Vreset, typical devices that can currently be
manufactured instead require Vset > 2Vreset. Figure 3a illus-
trates the ratios between set, reset, and logic assertion voltages,
showing how the constraints for MAGIC and FELIX do not
cover the ratios achieved by today’s real devices.

(b)

Input B OutputInput A

VnorVnor GND

Vfloat
Load

Vnor

0 1 0 1

V l
og

ic
/V

re
se

t

Vlogic/Vset

(a)
(+∆)

(a) (b)

Figure 3: (a) Threshold voltage constraints of different logic
families compared to typical devices; (b) voltage as-
sertions on bipolar devices for OSCAR’s NOR.

To address this incompatibility, we propose the OSCAR
logic family, which can enable NOR and OR operations in
ReRAM. For the non-destructive NOR primitive, we first pre-
set the output cell to high resistance (i.e., logic 0). Then, we
apply a voltage Vnor to the input cells, and Vnor + ∆ to the out-
put cell (0 < ∆ < Vset). We simultaneously ground a load cell
set to low resistance (logic 1). This generates a current from
the inputs and output to the load cell, resulting in a potential
drop across the output. If one of the inputs has a low resis-
tance (logic 1; shown in Figure 3b), the voltage drop across
the output is negligible, and the output remains at logic 0.
However, if both inputs are high resistance (logic 0), the volt-
age drop across the output is Vnor/4, and the output switches
to logic 1 if Vnor > 4Vset. The addition of ∆ ensures that the
output switches before the inputs can, preventing the inputs
from being destroyed. Our destructive OR primitive operates
similarly to our NOR (see Section IV of the full paper). Unlike

Figure 4: Speedup and energy savings of RACER for various
logic families, normalized to MAGIC NOR.

existing logic families, OSCAR NOR does not require any
constraint between Vset and Vreset, while OSCAR OR requires
Vset < 2Vreset. As shown in Figure 3a, OSCAR’s constraints
are compatible with ratios achievable by typical devices.

With OSCAR, we improve upon RACER’s performance
and energy savings by 30% and 37%, respectively (Figure 4),
compared to MAGIC NOR, while enabling broad compatibil-
ity with current devices. OSCAR-based RACER achieves a
142× speedup and 233× energy savings over a 16-core Xeon
CPU. Notably, RACER now outperforms CASCADE [2], a
state-of-the-art analog PUM dot product accelerator, for sev-
eral matrix-based microkernels by an average of 3.16×. We
conclude that by adapting RACER to other logic families, we
can significantly improve the efficiency of Boolean PUM.

Significance. While we focus on improving the compatibility
of RACER across a wide range of logic families and memory
technologies, both our decode & drive circuit design and OS-
CAR can be adapted to other digital PUM architectures. This
can allow others to design architectures that abstract away
technology-specific details from the architecture and from
software developers. We believe that this is a crucial step to
enabling the development of the currently-missing software
stack for non-dot-product PUM, which today is a significant
barrier to widespread commercialization. Without this ab-
straction, there is little incentive to develop a toolchain for
an architecture that may lose its relevance in a few years as
device technologies and commercial processes evolve.

References
[1] P. Chi et al., “PRIME: A Novel Processing-in-Memory Architecture

for Neural Network Computation in ReRAM-Based Main Memory,” in
ISCA, 2016.

[2] T. Chou et al., “CASCADE: Connecting RRAMs to Extend Analog
Dataflow in an End-to-End In-Memory Processing Paradigm,” in MI-
CRO, 2019.

[3] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspec-
tive,” IBM JRD, Nov.–Dec. 2019.

[4] S. Gupta, M. Imani, and T. Rosing, “FELIX: Fast and Energy-Efficient
Logic in Memory,” in ICCAD, 2018.

[5] B. Hoffer et al., “Experimental Demonstration of Memristor-Aided
Logic (MAGIC) Using Valence Change Memory (VCM),” TED, Sep.
2020.

[6] S. Kvantinsky et al., “MAGIC: Memristor-Aided Logic,” TCAS II, Sep.
2014.

[7] S. Li et al., “Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-Volatile Memories,” in DAC, 2016.

[8] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in
IMW, 2013.

[9] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[10] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce
Data Movement,” in Advances in Computers, 2017, vol. 106.

[11] S. Shiratake, “Scaling and Performance Challenges of Future DRAM,”
in IMW, 2020.

[12] S. Shirinzadeh et al., “Logic Synthesis for RRAM-Based In-Memory
Computing,” TCAD, Jul. 2018.

[13] M. S. Q. Truong et al., “RACER: Bit-Pipelined Processing Using Resis-
tive Memory,” in MICRO, 2021.

[14] D. J. Wouters et al., “Reliability of Computing-In-Memory Concepts
Based on Memristive Arrays,” in IEDM, 2022.

2

