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Processing-in-memory (PIM) refers to a computing
paradigm where some or all of the computation for an ap-
plication is moved closer to where the data resides (e.g., in
main memory). While PIM has been the subject of ongoing
research since the 1970s [8, 11, 17, 19, 26, 28, 29, 33], it has
experienced a resurgence in the last decade due to (1) the
pressing need to reduce the energy and latency overheads
associated with data movement between the CPU and memory
in conventional systems [6, 18], and (2) recent innovations in
memory technologies that can enable PIM integration (e.g.,
[13, 14, 15, 16, 20, 21, 24, 31]). Recently-released products and
prototypes, ranging from programmable near-memory pro-
cessing units [7, 36] to custom near-bank accelerators for
machine learning [22, 23, 30] and analog compute support
within memory arrays [9, 27], have demonstrated the viability
of manufacturing PIM architectures.

Unfortunately, despite the existence of commercial products,
PIM has yet to be widely integrated in systems. In this talk,
we discuss roadblocks that remain to achieving the widespread
adoption of PIM, and highlight some of our recent and ongoing
efforts to addressing these roadblocks. The roadblocks that we
discuss require the analysis of and co-design across multiple
layers of the hardware/software stack. Even with the rapid
growth of PIM research in the last decade, the overwhelming
majority of these works take a narrow view of the stack,
and predominantly focus on either device-level research or
proposing new hardware architectures for PIM. We focus on
two broad categories of roadblocks that have been neglected
by much of the prior work on PIM: (1) incorporating device-
level limitations on functionality and manufacturability into
architecture-level design decisions, and (2) providing pro-
grammer tools and systems software to harness the potential
improvements offered by PIM hardware.

First, there is a pressing need for cooperation across the
different hardware layers of the stack in order to ensure
the viability of PIM architectures. This need is particularly
important for processing-using-memory (PUM) [10, 32], where
electrical interactions between multiple memory cells are used
to perform logic and/or arithmetic operations without the
need for conventional CMOS-based ALUs. One example of
PUM is the MAGIC logic family [20], which can perform
Boolean logic primitives (e.g., NOR) using a pair of redox-
based resistive RAM (ReRAM) [37] cells. Such Boolean
primitives can be used to perform bit-serial operations [2],
which perform more complex operations one bit at a time

(e.g., a ripple carry addition), but can significantly increase
the operation latency compared to a multi-bit CMOS-based
ALU. While several PUM architectures propose to overcome
the high latencies of bit-serial computation by performing
column-wide Boolean primitives, we find that fundamental
device- and circuit-level limitations (e.g., the current carrying
capacity of a metal wire) prevent PUM architectures from
making use of ReRAM arrays larger than 200×200 cells [34].
Working together at the device, circuit, and architecture levels,
we overcome several limitations at each level in our RACER
architecture for PUM [34, 35]. To date, our work on RACER
has resulted in fully-implemented circuits for PUM control
flow, improved logic families that are compatible with typical
ReRAM devices that can be manufactured today, efficient
peripheral circuitry for small memory arrays, and a new
execution model that exploits pipelining at the bit granularity.
Without further cross-stack hardware projects, a number of
other hurdles will continue to remain for the commercial
production of PIM architectures.

Second, without further effort on the software stack, it will
be difficult to exploit most of the large benefits that PIM
architectures promise to provide. Today, this software stack
is largely missing, and as a result (1) few PIM works discuss
programmer interfaces to the novel hardware being proposed;
and (2) there is little support to integrate PIM hardware with
existing operating systems and runtimes. On the programming
front, some works have proposed frameworks (e.g., [1, 12])
or APIs [25] to implement PIM instructions, while others
have exposed PIM functionality as vector instructions [5, 34].
However, a general-purpose compiler for PIM, where the
programmer needs little to no knowledge of the underlying
hardware, has yet to be developed. Two key challenges to
the development of such a compiler are (1) the need for
automated approaches to identify opportunities to offload
computation to memory (some limited heuristics have been
developed [3, 10], but these are not yet fully automated), and
(2) the lack of automated data placement strategies to map
computation to the near-memory logic units or the memory
arrays that contain the data necessary for an operation. On
the systems front, programmers have become accustomed to
the existence of several support mechanisms that significantly
ease multiprocess execution, such as virtual memory, runtime
thread scheduling, and cache coherence. There has been some
work on coherence mechanisms for PIM [4, 38], but little work
exists on general-purpose PIM mechanisms for virtual memory



or thread scheduling. There is a need for the community to
start exploring these systems integration issues in order to
enable general-purpose use cases for PIM. If the community
does not provide support for programmers to use PIM without
having to give up existing comforts and programming models,
PIM hardware may not be able to overcome the technology
adoption chasm and may experience a premature demise.

We hope to inspire a new wave of research that concentrates
on the cross-stack issues that we highlight. We believe that
both of these sets of roadblocks require interdisciplinary co-
design in order to achieve efficient and practical solutions.
Such solutions will likely be important enablers to unlock the
large benefits promised by PIM architectures.
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