
Methodologies, Workloads, and Tools for Processing-in-Memory:
Enabling the Adoption of Data-Centric Architectures

Geraldo F. Oliveira� Juan Gómez-Luna� Saugata Ghose� Onur Mutlu�
�ETH Zürich �University of Illinois Urbana-Champaign

1. Motivation & Problem
The increasing prevalence and growing size of data in modern
applications have led to high costs for computation in tradi-
tional processor-centric computing systems. Moving large
volumes of data between memory devices (e.g., DRAM) and
computing elements (e.g., CPUs, GPUs) across bandwidth-
limited memory channels can consume more than 60% of the
total energy in modern systems [1, 2]. To mitigate these costs,
the processing-in-memory (PIM) [1, 3–9] paradigm moves
computation closer to where the data resides, reducing (and
in some cases eliminating) the need to move data between
memory and the processor.

There are two main approaches to PIM [4]: (1) processing-
near-memory (PnM) [2, 10–77], where PIM logic is added
to the same die as memory or to the logic layer of 3D-
stacked memory [78–80]; and (2) processing-using-memory
(PuM) [44, 81–103], which uses the operational principles
of memory cells to perform computation (for example, by
exploiting DRAM’s analog operation to perform bulk bitwise
AND, OR, and NOT logic operations [83, 84, 87, 96, 97, 99]).

Many works from academia [2, 10–12, 15–23, 25, 31, 35–
39, 48, 81–83, 85, 86, 90, 99, 104–112] and industry [34,
41–43, 50–54] have shown the benefits of PnM and PuM for
a wide range of workloads from different domains. However,
fully adopting PIM in commercial systems is still very chal-
lenging due to the lack of tools and system support for PIM
architectures across the computer architecture stack [4], which
includes: (i) workload characterization methodologies and
benchmark suites targeting PIM architectures; (ii) frameworks
that can facilitate the implementation of complex operations
and algorithms using the underlying PIM primitives (e.g., sim-
ple PIM arithmetic operations [19], bulk bitwise Boolean in-
DRAM operations [83, 84, 92]); (iii) compiler support and
compiler optimizations targeting PIM architectures; (iv) oper-
ating system support for PIM-aware virtual memory, memory
management, data allocation and mapping; and (v) efficient
data coherence and consistency mechanisms.

Our goal in this work is to provide tools and system support
for PnM and PuM architectures, aiming to ease the adoption of
PIM in current and future systems. With this goal in mind, we
address two limitations of prior works related to (i) identifying
and characterizing workloads suitable for PnM offloading and
(ii) enabling complex operations in PuM architectures. First,
we develop a methodology, called DAMOV, that identifies
sources of data movement bottlenecks in applications and
associates such bottlenecks with PIM suitability. Second, we
propose an end-to-end framework, called SIMDRAM, that
enables the implementation of complex in-DRAM operations
transparently to the programmer.

2. DAMOV: Identifying and Characterizing
Data Movement Bottlenecks

DAMOV introduces the first rigorous methodology to charac-
terize memory-related data movement bottlenecks in modern
workloads and the first benchmark suite for data movement

related studies. We develop a new methodology to correlate
application characteristics with the primary sources of data
movement bottlenecks and to determine the potential benefits
of three example data movement mitigation mechanisms: (1)
a deep cache hierarchy, (2) a hardware prefetcher, and (3) a
general-purpose PnM architecture.

Our methodology has three steps. In Step 1 (1 in Figure 1),
we use a hardware profiling tool [113] to identify memory-
bound functions across applications. In Step 2 (2), we use an
architecture-independent profiling tool [114, 115] to collect
metrics that provide insights about the memory access behav-
ior of each function. In Step 3 (3), we collect architecture-
dependent metrics and analyze the performance and energy of
each function on our three data movement mitigation mech-
anisms. By combining the three steps, we systematically
classify the leading causes of data movement bottlenecks in
an application or function into different bottleneck classes.

roi_begin

roi_end

Mark
region of interest (roi)

1a

Temp.
Locality

LFMR LFMR

LowHigh

High Low

1b 1c 2a 2b 2c

…

Classes of Memory Bottlenecks

Bottleneck class
of each key application function

Intel
VTune

profiling tool

Target Application
So

ur
ce

 C
od

e

Locality-based Clustering2

Temporal Locality

Architecture Independent

Spatial Locality

Memory Bottleneck Classification3

LLC Misses Per
Kilo-Instructions

Last-to-First
Miss Ratio (LFMR)

Architecture Dependent
Arithmetic
Intensity

Memory-Bound Function
Identification

1
DAMOV-SIM

simulator

Cores
Scalability Analysis

ld 0xFF
st 0xAF

Memory Traces

Input datasets

Figure 1: Overview of our three-step workload characteriza-
tion methodology.

Using this new methodology, we characterize 345 appli-
cations from a wide range of domains. Within these appli-
cations, we find (and fully characterize) 144 functions that
are memory-bound and significantly contribute to the overall
execution time. These functions are the core of our data move-
ment benchmark suite, called DAMOV [116]. Our analyses
reveal six new insights about the sources of data movement
bottlenecks and their relation to PnM:
1. Applications with high last-level cache misses per kilo-

instruction (MPKI) and low temporal locality are DRAM
bandwidth-bound. These applications benefit from the
large memory bandwidth available to the PnM system.

2. Applications with low last-level cache MPKI and low tem-
poral locality are DRAM latency-bound. These applications
do not benefit from L2/L3 caches. The PnM system im-
proves performance and energy efficiency by sending L1
misses directly to DRAM.

3. A second group of applications with low LLC MPKI and
low temporal locality are bottlenecked by L1/L2 cache ca-
pacity. These applications benefit from the PnM system at
low core counts. However, at high core counts (and thus
larger L1/L2 cache space), the caches capture most of the
data locality in these applications, decreasing the benefits
the PnM system provides. We make this observation using
a new metric that we develop, called last-to-first miss-ratio
(LFMR), which we define as the ratio between the number
of LLC misses and the total number of L1 cache misses.
We find that this metric accurately identifies how efficient
the cache hierarchy is in reducing data movement.

1

ar
X

iv
:2

20
5.

14
64

7v
2

 [
cs

.A
R

]
 3

1
M

ay
 2

02
2

4. Applications with high temporal locality and low LLC
MPKI are bottlenecked by L3 cache contention at high core
counts. In such cases, the PnM system provides a cost-
effective way to alleviate cache contention over increasing
the L3 cache capacity.

5. Applications with high temporal locality, low LLC MPKI,
and low arithmetic instruction (AI) are bottlenecked by the
L1 cache capacity. The three candidate data movement
mitigation mechanisms achieve similar performance and
energy consumption for these applications.

6. Applications with high temporal locality, low LLC MPKI,
and high AI are compute-bound. These applications benefit
from a deep cache hierarchy and hardware prefetchers, but
the PnM system degrades their performance.
We publicly release our 144 representative data movement

bottlenecked functions from 74 applications as the first open-
source benchmark suite for data movement, called DAMOV
benchmark suite, along with the complete source code for our
new characterization methodology and simulator [116]. For
more information on our extensive data movement bottleneck
characterization and on our DAMOV benchmark suite, along
with our detailed contributions (including four use cases of
our benchmark suite), please refer to our full paper [5, 117].

3. SIMDRAM: Enabling Complex Operations
using DRAM

A common approach for PuM architectures is to make use of
bulk bitwise computation. Many widely-used data-intensive
applications (e.g., databases, neural networks, graph analyt-
ics) heavily rely on a broad set of simple (e.g., AND, OR,
XOR) and complex (e.g., equality check, multiplication, ad-
dition) bitwise operations. Ambit [83, 84, 87, 96, 97, 99],
an in-DRAM PuM accelerator, proposes exploiting DRAM’s
analog operation to perform bulk bitwise majority-of-three
(MAJ) computation, which can be manipulated to perform
AND, OR, and NOT logic operations. Inspired by Ambit,
many prior works have explored DRAM and emerging non-
volatile memory (NVM) [118–154] designs that are capable
of performing in-memory bitwise operations [89, 92, 100, 106,
155–157]. However, a major shortcoming prevents these pro-
posals from becoming widely applicable: they support only
basic operations (e.g., Boolean operations, addition) and fall
short on flexibly supporting new and more complex operations.
Our goal is to design a framework that aids the adoption of
processing-using-DRAM by efficiently implementing com-
plex operations and providing the flexibility to support new
desired operations.

To this end, we propose SIMDRAM, the first end-to-end
framework for processing-using-DRAM. At its core, we build
the SIMDRAM framework around a DRAM substrate that
enables two previously-proposed techniques: (1) vertical
data layout in DRAM to support bit-shift operations, and (2)
majority-based logic. SIMDRAM consists of three key steps,
illustrated in Figure 2, to enable a desired operation in DRAM:
(1) building an efficient MAJ/NOT-based representation of the
desired operation, (2) mapping the operation input and output
operands to DRAM rows and to the required DRAM com-
mands that produce the desired operation, and (3) executing
the operation. We briefly describe these steps.

Step 1: Efficient
MAJ/NOT implementation

of desired operation

1

𝜇Program

AAP B6,B16
AP B15
AP B14
AAP B19
done

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎 AAP B1, …

𝝁𝑷𝒓𝒐𝒈𝒓𝒂𝒎

New SIMDRAM 𝜇Program

ISA

SIMDRAM OutputUser Input

AND/OR/NOT logic

MAJ

MAJ/NOT logic

Step 2: Row
allocation to operands

and µProgram generation
for desired operation

2
Desired operation

Main memory

bbop_new

New SIMDRAM
instruction

(a) SIMDRAM Framework: Steps 1 and 2

User Input

foo () {

bbop_new

}

Step 3: Execution according to µProgram3

A
P

B
1
5

Memory Controller
𝜇Program

SIMDRAM-enabled application

SIMDRAM Output

Control Unit

AAP B6,B16
AP B15
AP B14
AAP B19
done

…

Instruction result
in memory

(b) SIMDRAM Framework: Step 3

Figure 2: Overview of the SIMDRAM framework.

The goal of the first step (1 in Figure 2a) is to use logic
optimization to minimize the number of DRAM row activa-
tions, and therefore the compute latency required to perform
a specific operation. Accordingly, for a desired computation,
the first step is to derive its optimized MAJ/NOT-based imple-
mentation from its AND/OR/NOT-based implementation.

The second step (2 in Figure 2a) translates the MAJ/NOT-
based implementation into DRAM row activations. This step
includes (1) mapping the operands to the designated rows in
DRAM, and (2) defining the sequence of DRAM row acti-
vations that are required to perform the computation. SIM-
DRAM chooses the operand-to-row mapping and the sequence
of DRAM row activations to minimize the number of DRAM
row activations required for a specific operation.

The third step (3 in Figure 2b) is to program the memory
controller to issue the sequence of DRAM row activations to
the appropriate rows in DRAM to perform the computation
of the operation from start to end. To this end, SIMDRAM
uses a control unit in the memory controller that transparently
executes the sequence of DRAM row activations for each
specific operation.
System Integration. To incorporate SIMDRAM into a real
system, we address two integration challenges as part of our
work: (1) managing memory with both vertical and horizontal
layouts in a system, and (2) exposing SIMDRAM functionality
to programmers and compilers. As part of the support for
system integration, we introduce two components.

First, SIMDRAM adds a transposition unit in the memory
controller that transforms the data layout from the conven-
tional horizontal layout to vertical layout (and vice versa),
allowing both layouts to coexist. Using the transposition unit,
SIMDRAM provides the ability to store only the data that
is required for in-DRAM computation in the vertical layout.
SIMDRAM maintains the horizontal layout for the rest of the
data and allows the CPU to read/write its operands from/to
DRAM in a horizontal layout and at full bandwidth. Second,
SIMDRAM extends the ISA to enable the user/compiler to
communicate with the SIMDRAM control unit.
Key Results. We demonstrate SIMDRAM’s functional-
ity using an example set of operations including (1) N-input
logic operations (e.g., AND/OR/XOR of more than 2 input
bits); (2) relational operations (e.g., equality/inequality check,

2

greater than, maximum, minimum); (3) arithmetic operations
(e.g., addition, subtraction, multiplication, division); (4) pred-
ication (e.g., if-then-else); and (5) other complex operations
such as bitcount and ReLU [158].

We compare the benefits of SIMDRAM to different state-
of-the-art computing platforms (CPU, GPU, and Ambit [83,
84, 87, 96, 97, 99]). We comprehensively evaluate SIM-
DRAM’s reliability, area overhead, throughput, and energy
efficiency. We leverage the SIMDRAM framework to ac-
celerate seven application kernels from machine learning,
databases, and image processing (VGG-13 [159], VGG-
16 [159], LeNET [160], kNN [161], TPC-H [162], BitWeav-
ing [163], brightness [164]). Using a single DRAM bank,
SIMDRAM provides (1) 2.0× the throughput and 2.6× the
energy efficiency of Ambit [83], averaged across the 16 imple-
mented operations; and (2) 2.5× the performance of Ambit,
averaged across the seven application kernels. Compared to a
CPU and a high-end GPU, SIMDRAM using 16 DRAM banks
provides (1) 257× and 31× the energy efficiency, and 88×
and 5.8× the throughput of the CPU and GPU, respectively,
averaged across the 16 operations; and (2) 21× and 2.1×
the performance of the CPU and GPU, respectively, averaged
across the seven application kernels. SIMDRAM incurs no
additional area overhead on top of Ambit, and a total area over-
head of only 0.2% in a high-end CPU. We also evaluate the
reliability of SIMDRAM under different degrees of manufac-
turing process variation, and observe that it guarantees correct
operation as the DRAM process technology node scales down
to smaller sizes.

For more information on our SIMDRAM framework and
our extensive evaluation results (including a comparison to
an alternative framework for processing-using-cache architec-
tures), please refer to our full paper [165, 166].

4. Discussion
Few prior works tackle the challenge of providing end-to-end
support for PIM. We describe these works and their limitations
for in-DRAM computing.
Workload Characterization and Benchmark Suites for
PIM. We highlight two prior works, [167] and PrIM [41–
43] that also focus on characterizing workloads and providing
benchmark suites for PIM architectures. In [167], the au-
thors provide the first work that characterizes workloads for
PIM. They analyze the benefits a PIM architecture similar to
[71], where vector processing compute units are integrated
into the DDRx memory modules, provides for five applica-
tions. Even though [167] has a similar goal to DAMOV, it
understandably does not provide insights into modern data-
intensive applications and PIM architectures as it dates from
2001. The authors of [41–43] propose PrIM, a benchmark
suite of 16 workloads from different application domains (e.g.,
dense/sparse linear algebra, databases, data analytics, graph
processing, neural networks, bioinformatics, image process-
ing) tailored to fit the characteristics of a real PIM architecture
(i.e., the UPMEM-based PIM system [34]). PrIM is open-
source and publicly available at [168]. Unlike these prior
works, DAMOV is applicable to and can be used to study other
PIM architectures than processing-in/-near DRAM, including
processing-in/-near cache [68, 93–95, 169–171], processing-

in/-near storage [40, 172–181], and processing-in/-near emerg-
ing NVMs [81, 82, 90, 91, 100, 182, 183]. This is possible
since DAMOV’s methodology and benchmarks are mainly
concerned with broadly characterizing data movement bottle-
necks in an application, independent of the underlying PIM
architecture.
Frameworks for PIM. DualityCache [95] is an end-to-end
framework for in-cache computing, which executes a fixed
set of operations in a single-instruction multiple-thread (SIMT)
manner. Employing DualityCache in DRAM is not straight-
forward due to the fundamental differences between in-cache
computing and in-DRAM computing (e.g., the destructive be-
havior of DRAM operations and cost-sensitivity of DRAM
chips). Two prior works, Hyper-A [184] and IMP [185], pro-
pose frameworks for in-emerging-NVM computing. Since
Hyper-A and IMP target in-emerging-NVM substrates that
utilize different computing paradigms (e.g., associative pro-
cessing [186, 187]) or rely on particular structures of the NVM
array (such as analog-to-digital/digital-to-analog converters) to
perform computation, they are not applicable to an in-DRAM
substrate that performs bulk bitwise operations. Olgun et al.
propose the PiDRAM [188] framework, a flexible end-to-end
and open-source FPGA-based framework that enables system
integration studies and evaluation of in-DRAM computing
techniques (e.g., in-DRAM copy and initialization [86, 98]
and in-DRAM true random generation [108, 189, 190]) using
real unmodified DRAM chips. PiDRAM is publicly avail-
able at [191] and can be used to prototype our SIMDRAM
framework in a real system.

5. Conclusion & Future Work
This paper summarizes two of our recent efforts towards pro-
viding holistic system-level support for processing-in-memory
(PIM) systems. We provide (i) a methodology to identify
and characterize sources of data movement bottlenecks in a
workload that can enable the programmer to assess whether a
processing-near-memory (PnM) architecture can mitigate the
identified data movement bottlenecks; (ii) the first benchmark
suite (i.e., DAMOV) tailored for analyzing data movement
bottlenecks and effects of near-data processing; and (iii) an
end-to-end framework (i.e., SIMDRAM) that enables efficient
and programmer-transparent computation of a wide range of
arbitrary and complex operations by employing processing-
using-memory (PuM) in DRAM. We believe that DAMOV can
enable (1) simple and practical identification of PIM-suitable
workloads and functions, (2) a research substrate (with our
benchmark suite and simulator) for PIM-related architecture
and system studies. SIMDRAM can facilitate the broader
adoption of PuM architectures by more workloads and pro-
grammers. We hope that our work inspires future research
on system-level solutions and tools that can aid the research,
development, and implementation of PIM architectures.

Acknowledgments
We thank the SAFARI Research Group members for valuable
feedback and the stimulating intellectual environment they
provide. We acknowledge the generous gifts provided by
our industrial partners, including ASML, Facebook, Google,
Huawei, Intel, Microsoft, and VMware. We acknowledge

3

support from the Semiconductor Research Corporation and
the ETH Future Computing Laboratory.

This invited extended abstract is a summary version of our
two prior works DAMOV [5, 117] (published at IEEE Access
2021) and SIMDRAM [165, 166] (published at ASPLOS
2021). Presentations that describe DAMOV can be found at
[192] (short talk video), [193] (long talk video), and [194]
(tutorial on the DAMOV framework and benchmarks). A
presentation that describes SIMDRAM can be found at [195].

References
[1] O. Mutlu et al., “Processing Data Where It Makes Sense: Enabling

In-Memory Computation,” MICPRO, 2019.
[2] A. Boroumand et al., “Google Workloads for Consumer Devices: Miti-

gating Data Movement Bottlenecks,” in ASPLOS, 2018.
[3] S. Ghose et al., “Processing-in-Memory: A Workload-Driven Perspec-

tive,” IBM JRD, 2019.
[4] O. Mutlu et al., “A Modern Primer on Processing in Memory,” Emerging

Computing: From Devices to Systems - Looking Beyond Moore and Von
Neumann, 2021.

[5] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark
Suite for Evaluating Data Movement Bottlenecks,” IEEE Access, 2021.

[6] S. Ghose et al., “The Processing-in-Memory Paradigm: Mechanisms to
Enable Adoption,” in Beyond-CMOS Technologies for Next Generation
Computer Design, 2019.

[7] O. Mutlu et al., “Enabling Practical Processing in and Near Memory for
Data-Intensive Computing,” in DAC, 2019.

[8] O. Mutlu and L. Subramanian, “Research Problems and Opportunities in
Memory Systems,” SUPERFRI, 2014.

[9] O. Mutlu, “Memory Scaling: A Systems Architecture Perspective,” in
IMW, 2013.

[10] J. Ahn et al., “A Scalable Processing-in-Memory Accelerator for Parallel
Graph Processing,” in ISCA, 2015.

[11] L. Nai et al., “GraphPIM: Enabling Instruction-Level PIM Offloading in
Graph Computing Frameworks,” in HPCA, 2017.

[12] A. Boroumand et al., “LazyPIM: An Efficient Cache Coherence Mecha-
nism for Processing-in-Memory,” IEEE CAL, 2017.

[13] D. Zhang et al., “TOP-PIM: Throughput-Oriented Programmable Pro-
cessing in Memory,” in HPDC, 2014.

[14] M. Gao and C. Kozyrakis, “HRL: Efficient and Flexible Reconfigurable
Logic for Near-Data Processing,” in HPCA, 2016.

[15] J. S. Kim et al., “GRIM-Filter: Fast Seed Location Filtering in DNA
Read Mapping using Processing-in-Memory Technologies,” in APBC,
2018.

[16] M. Drumond et al., “The Mondrian Data Engine,” in ISCA, 2017.
[17] P. C. Santos et al., “Operand Size Reconfiguration for Big Data Process-

ing in Memory,” in DATE, 2017.
[18] G. F. Oliveira et al., “NIM: An HMC-Based Machine for Neuron Com-

putation,” in ARC, 2017.
[19] J. Ahn et al., “PIM-Enabled Instructions: A Low-Overhead, Locality-

Aware Processing-in-Memory Architecture,” in ISCA, 2015.
[20] M. Gao et al., “TETRIS: Scalable and Efficient Neural Network Acceler-

ation with 3D Memory,” in ASPLOS, 2017.
[21] D. Kim et al., “Neurocube: A Programmable Digital Neuromorphic

Architecture with High-Density 3D Memory,” in ISCA, 2016.
[22] P. Gu et al., “Leveraging 3D Technologies for Hardware Security: Op-

portunities and Challenges,” in GLSVLSI, 2016.
[23] A. Boroumand et al., “CoNDA: Efficient Cache Coherence Support for

Near-Data Accelerators,” in ISCA, 2019.
[24] K. Hsieh et al., “Transparent Offloading and Mapping (TOM) Enabling

Programmer-Transparent Near-Data Processing in GPU Systems,” in
ISCA, 2016.

[25] D. S. Cali et al., “GenASM: A High-Performance, Low-Power Approxi-
mate String Matching Acceleration Framework for Genome Sequence
Analysis,” in MICRO, 2020.

[26] S. H. Pugsley et al., “NDC: Analyzing the Impact of 3D-Stacked Mem-
ory+Logic Devices on MapReduce Workloads,” in ISPASS, 2014.

[27] A. Farmahini-Farahani et al., “NDA: Near-DRAM Acceleration Archi-
tecture Leveraging Commodity DRAM Devices and Standard Memory
Modules,” in HPCA, 2015.

[28] G. H. Loh et al., “A Processing in Memory Taxonomy and a Case for
Studying Fixed-Function PIM,” in WoNDP, 2013.

[29] A. Pattnaik et al., “Scheduling Techniques for GPU Architectures with
Processing-in-Memory Capabilities,” in PACT, 2016.

[30] B. Akin et al., “Data Reorganization in Memory Using 3D-Stacked
DRAM,” in ISCA, 2016.

[31] K. Hsieh et al., “Accelerating Pointer Chasing in 3D-Stacked Memory:
Challenges, Mechanisms, Evaluation,” in ICCD, 2016.

[32] O. O. Babarinsa and S. Idreos, “JAFAR: Near-Data Processing for
Databases,” in SIGMOD, 2015.

[33] J. H. Lee et al., “BSSync: Processing Near Memory for Machine Learn-
ing Workloads with Bounded Staleness Consistency Models,” in PACT,
2015.

[34] F. Devaux, “The True Processing in Memory Accelerator,” in HCS, 2019.
[35] A. Boroumand et al., “Mitigating Edge Machine Learning Inference

Bottlenecks: An Empirical Study on Accelerating Google Edge Models,”
arXiv:2103.00768 [cs.AR], 2021.

[36] A. Boroumand et al., “Google Neural Network Models for Edge Devices:
Analyzing and Mitigating Machine Learning Inference Bottlenecks,” in
PACT, 2021.

[37] A. Boroumand et al., “Polynesia: Enabling High-Performance and
Energy-Efficient Hybrid Transactional/Analytical Databases with Hard-
ware/Software Co-Design,” in ICDE, 2022.

[38] A. Boroumand et al., “Polynesia: Enabling Effective Hybrid Transac-
tional/Analytical Databases with Specialized Hardware/Software Co-
Design,” arXiv:2103.00798 [cs.AR], 2021.

[39] A. Boroumand, “Practical Mechanisms for Reducing Processor-Memory
Data Movement in Modern Workloads,” Ph.D. dissertation, Carnegie
Mellon University, 2020.

[40] N. M. Ghiasi et al., “GenStore: A High-Performance and Energy-
Efficient In-Storage Computing System for Genome Sequence Analysis,”
in ASPLOS, 2022.

[41] J. Gómez-Luna et al., “Benchmarking Memory-Centric Computing Sys-
tems: Analysis of Real Processing-in-Memory Hardware,” in CUT,
2021.

[42] J. Gómez-Luna et al., “Benchmarking a New Paradigm: An Ex-
perimental Analysis of a Real Processing-in-Memory Architecture,”
arXiv:2105.03814 [cs.AR], 2021.

[43] J. Gómez-Luna et al., “Benchmarking a New Paradigm: Experimental
Analysis and Characterization of a Real Processing-in-Memory System,”
IEEE Access, 2022.

[44] M. Besta et al., “SISA: Set-Centric Instruction Set Architecture for Graph
Mining on Processing-in-Memory Systems,” in MICRO, 2021.

[45] C. Giannoula et al., “SynCron: Efficient Synchronization Support for
Near-Data-Processing Architectures,” in HPCA, 2021.

[46] I. Fernandez et al., “NATSA: A Near-Data Processing Accelerator for
Time Series Analysis,” in ICCD, 2020.

[47] G. Singh et al., “NERO: A Near High-Bandwidth Memory Stencil Ac-
celerator for Weather Prediction Modeling,” in FPL, 2020.

[48] S. H. S. Rezaei et al., “NoM: Network-on-Memory for Inter-Bank Data
Transfer in Highly-Banked Memories,” CAL, 2020.

[49] G. Singh et al., “NAPEL: Near-Memory Computing Application Perfor-
mance Prediction via Ensemble Learning,” in DAC, 2019.

[50] S. Lee et al., “A 1ynm 1.25V 8Gb, 16Gb/s/Pin GDDR6-Based
Accelerator-in-Memory Supporting 1TFLOPS MAC Operation and Var-
ious Activation Functions for Deep-Learning Applications,” in ISSCC,
2022.

[51] Y.-C. Kwon et al., “25.4 A 20nm 6GB Function-In-Memory DRAM,
Based on HBM2 with a 1.2 TFLOPS Programmable Computing Unit
Using Bank-Level Parallelism, for Machine Learning Applications,” in
ISSCC, 2021.

[52] S. Lee et al., “Hardware Architecture and Software Stack for PIM Based
on Commercial DRAM Technology: Industrial Product,” in ISCA, 2021.

[53] L. Ke et al., “Near-Memory Processing in Action: Accelerating Person-
alized Recommendation with AxDIMM,” IEEE Micro, 2021.

[54] D. Niu et al., “184QPS/W 64Mb/mm2 3D Logic-to-DRAM Hybrid Bond-
ing with Process-Near-Memory Engine for Recommendation System,”
in ISSCC, 2022.

[55] C. Giannoula et al., “SparseP: Towards Efficient Sparse Matrix Vector
Multiplication on Real Processing-In-Memory Systems,” in SIGMET-
RICS, 2022.

[56] H. Shin et al., “McDRAM: Low Latency and Energy-Efficient Matrix
Computations in DRAM,” IEEE TCADICS, 2018.

[57] S. Cho et al., “McDRAM v2: In-Dynamic Random Access Memory
Systolic Array Accelerator to Address the Large Model Problem in
Deep Neural Networks on the Edge,” IEEE Access, 2020.

[58] Q. Zhu et al., “Accelerating Sparse Matrix-Matrix Multiplication with
3D-Stacked Logic-in-Memory Hardware,” in HPEC, 2013.

4

[59] E. Azarkhish et al., “Logic-Base Interconnect Design for Near Memory
Computing in the Smart Memory Cube,” IEEE VLSI, 2016.

[60] E. Azarkhish et al., “Neurostream: Scalable and Energy Efficient Deep
Learning with Smart Memory Cubes,” TPDS, 2017.

[61] Q. Guo et al., “3D-Stacked Memory-Side Acceleration: Accelerator and
System Design,” in WoNDP, 2014.

[62] J. P. C. de Lima et al., “Design Space Exploration for PIM Architectures
in 3D-Stacked Memories,” in CF, 2018.

[63] B. Akın et al., “HAMLeT: Hardware Accelerated Memory Layout Trans-
form within 3D-Stacked DRAM,” in HPEC, 2014.

[64] Y. Huang et al., “A Heterogeneous PIM Hardware-Software Co-Design
for Energy-Efficient Graph Processing,” in IPDPS, 2020.

[65] G. Dai et al., “GraphH: A Processing-in-Memory Architecture for Large-
Scale Graph Processing,” IEEE TCAD, 2018.

[66] J. Liu et al., “Processing-in-Memory for Energy-Efficient Neural Net-
work Training: A Heterogeneous Approach,” in MICRO, 2018.

[67] P.-A. Tsai et al., “Adaptive Scheduling for Systems with Asymmetric
Memory Hierarchies,” in MICRO, 2018-10.

[68] A. Denzler et al., “Casper: Accelerating Stencil Computation using
Near-Cache Processing,” arXiv:2112.14216 [cs.AR], 2021.

[69] P. Gu et al., “iPIM: Programmable In-Memory Image Processing Accel-
erator using Near-Bank Architecture,” in ISCA, 2020.

[70] H. Asghari-Moghaddam et al., “Chameleon: Versatile and Practical
Near-DRAM Acceleration Architecture for Large Memory Systems,” in
MICRO, 2016.

[71] D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro, 1997.
[72] R. Balasubramonian et al., “Near-Data Processing: Insights from a

MICRO-46 Workshop,” IEEE Micro, 2014.
[73] D. G. Elliott et al., “Computational RAM: Implementing Processors in

Memory,” Design and Test of Computers, 1999.
[74] M. A. Z. Alves et al., “Saving Memory Movements Through Vector

Processing in the DRAM,” in CASES, 2015.
[75] A. Farmahini-Farahani et al., “DRAMA: An Architecture for Accelerated

Processing Near Memory,” Computer Architecture Letters, 2014.
[76] H. Asghari-Moghaddam et al., “Near-DRAM Acceleration with Single-

ISA Heterogeneous Processing in Standard Memory Modules,” IEEE
Micro, 2016.

[77] S. L. Xi et al., “Beyond the Wall: Near-Data Processing for Databases,”
in DaMoN, 2015.

[78] Hybrid Memory Cube Consortium, “Hybrid Memory Cube Specification
Rev. 2.0,” http://www.hybridmemorycube.org/.

[79] D. U. Lee et al., “25.2 A 1.2V 8Gb 8-Channel 128GB/s High-Bandwidth
Memory (HBM) Stacked DRAM with Effective Microbump I/O Test
Methods Using 29nm Process and TSV,” in ISSCC, 2014.

[80] D. Lee et al., “Simultaneous Multi-Layer Access: Improving 3D-Stacked
Memory Bandwidth at Low Cost,” ACM TACO, 2016.

[81] P. Chi et al., “PRIME: A Novel Processing-in-Memory Architecture
for Neural Network Computation in ReRAM-Based Main Memory,” in
ISCA, 2016.

[82] A. Shafiee et al., “ISAAC: A Convolutional Neural Network Accelerator
with In-Situ Analog Arithmetic in Crossbars,” in ISCA, 2016.

[83] V. Seshadri et al., “Ambit: In-Memory Accelerator for Bulk Bitwise
Operations Using Commodity DRAM Technology,” in MICRO, 2017.

[84] V. Seshadri and O. Mutlu, “In-DRAM Bulk Bitwise Execution Engine,”
arXiv:1905.09822 [cs.AR], 2019.

[85] S. Li et al., “DRISA: A DRAM-Based Reconfigurable In-Situ Accelera-
tor,” in MICRO, 2017.

[86] V. Seshadri et al., “RowClone: Fast and Energy-Efficient In-DRAM Bulk
Data Copy and Initialization,” in MICRO, 2013.

[87] V. Seshadri and O. Mutlu, “The Processing Using Memory Paradigm:
In-DRAM Bulk Copy, Initialization, Bitwise AND and OR,”
arXiv:1610.09603 [cs.AR], 2016.

[88] Q. Deng et al., “DrAcc: A DRAM Based Accelerator for Accurate CNN
Inference,” in DAC, 2018.

[89] X. Xin et al., “ELP2IM: Efficient and Low Power Bitwise Operation
Processing in DRAM,” in HPCA, 2020.

[90] L. Song et al., “GraphR: Accelerating Graph Processing Using ReRAM,”
in HPCA, 2018.

[91] L. Song et al., “PipeLayer: A Pipelined ReRAM-Based Accelerator for
Deep Learning,” in HPCA, 2017.

[92] F. Gao et al., “ComputeDRAM: In-Memory Compute Using Off-the-
Shelf DRAMs,” in MICRO, 2019.

[93] C. Eckert et al., “Neural Cache: Bit-Serial In-Cache Acceleration of
Deep Neural Networks,” in ISCA, 2018.

[94] S. Aga et al., “Compute Caches,” in HPCA, 2017.

[95] D. Fujiki et al., “Duality Cache for Data Parallel Acceleration,” in ISCA,
2019.

[96] V. Seshadri et al., “Buddy-RAM: Improving the Performance and Effi-
ciency of Bulk Bitwise Operations Using DRAM,” arXiv:1611.09988
[cs:AR], 2016.

[97] V. Seshadri and O. Mutlu, “Simple Operations in Memory to Reduce
Data Movement,” in Advances in Computers, Volume 106, 2017.

[98] V. Seshadri et al., “RowClone: Accelerating Data Movement and Initial-
ization Using DRAM,” arXiv:1805.03502 [cs.AR], 2018.

[99] V. Seshadri et al., “Fast Bulk Bitwise AND and OR in DRAM,” in IEEE
CAL, 2015.

[100] S. Li et al., “Pinatubo: A Processing-in-Memory Architecture for Bulk
Bitwise Operations in Emerging Non-Volatile Memories,” in DAC, 2016.

[101] J. D. Ferreira et al., “pLUTo: In-DRAM Lookup Tables to Enable
Massively Parallel General-Purpose Computation,” arXiv:2104.07699
[cs.AR], 2021.

[102] M. Imani et al., “FloatPIM: In-Memory Acceleration of Deep Neural
Network Training with High Precision,” in ISCA, 2019.

[103] Z. He et al., “Sparse BD-Net: A Multiplication-Less DNN with Sparse
Binarized Depth-Wise Separable Convolution,” JETC, 2020.

[104] M. Zhang et al., “GraphP: Reducing Communication for PIM-Based
Graph Processing with Efficient Data Partition,” in HPCA, 2018.

[105] S. Angizi et al., “GraphS: A Graph Processing Accelerator Leveraging
SOT-MRAM,” in DATE, 2019.

[106] S. Angizi and D. Fan, “GraphiDe: A Graph Processing Accelerator
Leveraging In-DRAM-Computing,” in GLSVLSI, 2019.

[107] Y. Zhuo et al., “GraphQ: Scalable PIM-Based Graph Processing,” in
MICRO, 2019.

[108] J. S. Kim et al., “D-RaNGe: Using Commodity DRAM Devices to Gen-
erate True Random Numbers With Low Latency and High Throughput,”
in HPCA, 2019.

[109] J. S. Kim et al., “The DRAM Latency PUF: Quickly Evaluating Physical
Unclonable Functions by Exploiting the Latency-Reliability Tradeoff in
Modern Commodity DRAM Devices,” in HPCA, 2018.

[110] Y. Wang et al., “FIGARO: Improving System Performance via Fine-
Grained In-DRAM Data Relocation and Caching,” in MICRO, 2020.

[111] K. K. Chang et al., “Low-Cost Inter-Linked Subarrays (LISA): Enabling
Fast Inter-Subarray Data Movement in DRAM,” in HPCA, 2016.

[112] D. S. Cali et al., “SeGraM: A Universal Hardware Accelerator for Ge-
nomic Sequence-to-Graph and Sequence-to-Sequence Mapping,” in
ISCA, 2022.

[113] Intel Corp., “Intel VTune Amplifier 2019 User Guide,”
https://software.intel.com/en-us/vtune-amplifier-help.

[114] J. Weinberg et al., “Quantifying Locality in the Memory Access Patterns
of HPC Applications,” in SC, 2005.

[115] Y. S. Shao and D. Brooks, “ISA-Independent Workload Characterization
and Its Implications for Specialized Architectures,” in ISPASS, 2013.

[116] SAFARI Research Group, “DAMOV Benchmark Suite and Simulation
Framework,” https://github.com/CMU-SAFARI/DAMOV.

[117] G. F. Oliveira et al., “DAMOV: A New Methodology and Benchmark
Suite for Evaluating Data Movement Bottlenecks,” arXiv:2105.03725
[cs.AR], 2021.

[118] B. C. Lee et al., “Architecting Phase Change Memory as a Scalable
DRAM Alternative,” in ISCA, 2009.

[119] M. K. Qureshi et al., “Scalable High Performance Main Memory System
Using Phase-Change Memory Technology,” in ISCA, 2009.

[120] B. C. Lee et al., “Phase-Change Technology and the Future of Main
Memory,” IEEE Micro, 2010.

[121] B. C. Lee et al., “Phase Change Memory Architecture and the Quest for
Scalability,” CACM, 2010.

[122] E. Kültürsay et al., “Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative,” in ISPASS, 2013.

[123] P. Zhou et al., “A Durable and Energy Efficient Main Memory Using
Phase Change Memory Technology,” in ISCA, 2009.

[124] H.-S. P. Wong et al., “Phase Change Memory,” Proc. IEEE, 2010.
[125] J. Meza et al., “A Case for Small Row Buffers in Non-Volatile Main

Memories,” in ICCD, 2012.
[126] J. Meza et al., “A Case for Efficient Hardware/Software Cooperative

Management of Storage and Memory,” in WEED, 2013.
[127] S. Song et al., “Improving Phase Change Memory Performance with

Data Content Aware Access,” in ISMM, 2020.
[128] S. Song et al., “Aging-Aware Request Scheduling for Non-Volatile Main

Memory,” in ASP-DAC, 2021.
[129] S. Song et al., “Enabling and Exploiting Partition-Level Parallelism

(PALP) in Phase Change Memories,” TECS, 2019.

5

https://github.com/CMU-SAFARI/DAMOV

[130] S. Bock et al., “Analyzing the Impact of Useless Write-Backs on the
Endurance and Energy Consumption of PCM Main Memory,” in ISPASS,
2011.

[131] G. W. Burr et al., “Overview of Candidate Device Technologies for
Storage-Class Memory,” IBM JRD, 2008.

[132] Y. Du et al., “Bit Mapping for Balanced PCM Cell Programming,” in
ISCA, 2013.

[133] L. Jiang et al., “FPB: Fine-Grained Power Budgeting to Improve Write
Throughput of Multi-Level Cell Phase Change Memory,” in MICRO,
2012.

[134] L. Jiang et al., “Hardware-Assisted Cooperative Integration of Wear-
Leveling and Salvaging for Phase Change Memory,” TACO, 2013.

[135] S. Kannan et al., “Energy Aware Persistence: Reducing Energy Over-
heads of Memory-Based Persistence in NVMs,” in PACT, 2016.

[136] M. K. Qureshi, “Pay-As-You-Go: Low-Overhead Hard-Error Correction
for Phase Change Memories,” in MICRO, 2011.

[137] M. K. Qureshi et al., “Improving Read Performance of Phase Change
Memories via Write Cancellation and Write Pausing,” in HPCA, 2010.

[138] M. K. Qureshi et al., “Morphable Memory System: A Robust Archi-
tecture for Exploiting Multi-Level Phase Change Memories,” in ISCA,
2010.

[139] A. Sebastian et al., “Temporal Correlation Detection Using Computa-
tional Phase-Change Memory,” Nature Commun., 2017.

[140] R. Wang et al., “Exploit Imbalanced Cell Writes to Mitigate Write
Disturbance in Dense Phase Change Memory,” in DAC, 2015.

[141] J. Yue and Y. Zhu, “Accelerating Write by Exploiting PCM Asymmetries,”
in HPCA, 2013.

[142] M. Zhou et al., “Writeback-Aware Partitioning and Replacement for
Last-Level Caches in Phase Change Main Memory Systems,” TACO,
2012.

[143] M. Zhou et al., “Writeback-Aware Bandwidth Partitioning for Multi-Core
Systems with PCM,” in PACT, 2013.

[144] H. Yoon et al., “Techniques for Data Mapping and Buffering to Exploit
Asymmetry in Multi-Level Cell (Phase Change) Memory,” SAFARI
Research Group, Tech. Rep. TR-SAFARI-2013-002, 2013.

[145] G. Dhiman et al., “PDRAM: A Hybrid PRAM and DRAM Main Memory
System,” in DAC, 2009.

[146] K. Wang et al., “Low-Power Non-Volatile Spintronic Memory: STT-
RAM and Beyond,” J. Phys. D: Appl. Phys, 2013.

[147] E. Chen et al., “Advances and Future Prospects of Spin-Transfer Torque
Random Access Memory,” TMAG, 2010.

[148] Z. Diao et al., “Spin-Transfer Torque Switching in Magnetic Tunnel
Junctions and Spin-Transfer Torque Random Access Memory,” Journal
of Physics: Condensed Matter, 2007.

[149] M. Hosomi et al., “A Novel Nonvolatile Memory with Spin Torque
Transfer Magnetization Switching: Spin-RAM,” in IEDM, 2005.

[150] A. Raychowdhury et al., “Design Space and Scalability Exploration
of 1T-1STT MTJ Memory Arrays in the Presence of Variability and
Disturbances,” in IEDM, 2009.

[151] H.-S. P. Wong et al., “Metal–Oxide RRAM,” Proc. IEEE, 2012.
[152] J. J. Yang et al., “Memristive Devices for Computing,” Nature Nanotech-

nology, 2013.
[153] D. Bondurant, “Ferroelectronic RAM Memory Family for Critical Data

Storage,” Ferroelectrics, 1990.
[154] H. Yoon et al., “Efficient Data Mapping and Buffering Techniques for

Multilevel Cell Phase-Change Memories,” TACO, 2014.
[155] S. Angizi et al., “IMCE: Energy-Efficient Bitwise In-Memory Convolu-

tion Engine for Deep Neural Network,” in ASP-DAC, 2018.
[156] M. F. Ali et al., “In-Memory Low-Cost Bit-Serial Addition Using Com-

modity DRAM Technology,” in TCAS-I, 2019.
[157] S. Li et al., “SCOPE: A Stochastic Computing Engine for DRAM-Based

In-Situ Accelerator,” in MICRO, 2018.
[158] I. Goodfellow et al., Deep Learning. MIT Press, 2016.
[159] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for

Large-Scale Image Recognition,” arXiv:1409.1556 [cs.CV], 2014.
[160] Y. LeCun et al., “LeNet-5, Convolutional Neural Networks,” http://yann.

lecun.com/exdb/lenet, 2015.
[161] Y. Lee, “Handwritten Digit Recognition Using k-Nearest-Neighbor,

Radial-Basis Function, and Backpropagation Neural Networks,” Neural
Computation, 1991.

[162] Transaction Processing Performance Council, “TPC-H,” http://www.tpc.
org/tpch/.

[163] Y. Li and J. M. Patel, “BitWeaving: Fast Scans for Main Memory Data
Processing,” in SIGMOD, 2013.

[164] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed.
Addison-Wesley, 2002.

[165] N. Hajinazar et al., “SIMDRAM: A Framework for Bit-Serial SIMD
Processing Using DRAM,” in ASPLOS, 2021.

[166] N. Hajinazar et al., “SIMDRAM: An End-to-End Framework for Bit-
Serial SIMD Computing in DRAM,” arXiv:2105.12839 [cs.AR], 2021.

[167] R. C. Murphy et al., “The Characterization of Data Intensive Memory
Workloads on Distributed PIM Systems,” in Intelligent Memory Systems.
Springer, 2001.

[168] SAFARI Research Group, “PrIM Benchmark Suite,”
https://github.com/CMU-SAFARI/prim-benchmarks.

[169] W. A. Simon et al., “BLADE: An In-Cache Computing Architecture for
Edge Devices,” IEEE Transactions on Computers, 2020.

[170] A. V. Nori et al., “REDUCT: Keep it Close, Keep it Cool!: Efficient Scal-
ing of DNN Inference on Multi-Core CPUs with Near-Cache Compute,”
in ISCA, 2021.

[171] A. Nag et al., “GenCache: Leveraging In-Cache Operators for Efficient
Sequence Alignment,” in MICRO, 2019.

[172] M. Wilkening et al., “RecSSD: Near Data Processing for Solid State
Drive Based Recommendation Inference,” in ASPLOS, 2021.

[173] C. Y. Cho et al., “XSD: Accelerating MapReduce by Harnessing the
GPU Inside an SSD,” in WoNDP, 2013.

[174] E. Riedel et al., “Active Disks for Large-Scale Data Processing,” IEEE
Computer, 2001.

[175] E. Riedel et al., “Active Disk Architecture for Databases,” Carnegie-
Mellon University, Tech. Rep. CMU-CS-00-145, 2000.

[176] E. Riedel et al., “Data Mining on an OLTP System (Nearly) for Free,” in
SIGMOD, 2000.

[177] E. Riedel, “Active Disks – Remote Execution for Network-Attached
Storage,” Ph.D. dissertation, Carnegie Mellon University, 1999.

[178] E. Riedel et al., “Active Storage for Large-Scale Data Mining and Multi-
media Applications,” in VLDB, 1998.

[179] E. Riedel, “Active Disks: Remote Execution for Network-Attached
Storage,” Carnegie Mellon University, Tech. Rep. CMU-CS-97-198,
1997.

[180] K. Keeton et al., “A Case for Intelligent Disks (IDISKs),” SIGMOD,
1998.

[181] S.-W. Jun et al., “BlueDBM: An Appliance for Big Data Analytics,” in
ISCA, 2015.

[182] Y. Wang et al., “REREC: In-ReRAM Acceleration with Access-Aware
Mapping for Personalized Recommendation,” in ICCAD, 2021.

[183] S. Angizi et al., “Exploring DNA Alignment-in-Memory Leveraging
Emerging SOT-MRAM,” in GLSVLSI, 2020.

[184] Y. Zha and J. Li, “Hyper-AP: Enhancing Associative Processing Through
A Full-Stack Optimization,” in ISCA, 2020.

[185] D. Fujiki et al., “In-Memory Data Parallel Processor,” in ASPLOS, 2018.
[186] A. E. Slade and H. O. McMahon, “A Cryotron Catalog Memory System,”

in WJCC, 1956.
[187] A. Krikelis and C. C. Weems, “Associative Processing and Processors,”

Computer, 1994.
[188] A. Olgun et al., “PiDRAM: A Holistic End-to-End FPGA-Based Frame-

work for Processing-in-DRAM,” arXiv:2111.00082 [cs.AR], 2021.
[189] F. N. Bostancı et al., “DR-STRaNGe: End-to-End System Design for

DRAM-Based True Random Number Generators,” in HPCA, 2022.
[190] A. Olgun et al., “QUAC-TRNG: High-Throughput True Random Number

Generation using Quadruple Row Activation in Commodity DRAM
Chips,” in ISCA, 2021.

[191] SAFARI Research Group, “PiDRAM – GitHub Repository,” https://
github.com/CMU-SAFARI/PiDRAM, 2021.

[192] G. F. Oliveira, “DAMOV: A New Methodology and Benchmark Suite
for Evaluating Data Movement Bottlenecks – Short Talk,” https://www.
youtube.com/watch?v=HkMYuYMuZOg.

[193] G. F. Oliveira, “DAMOV: A New Methodology and Benchmark Suite for
Evaluating Data Movement Bottlenecks – Long Talk at SAFARI Live
Seminar,” https://www.youtube.com/watch?v=GWideVyo0nM.

[194] G. F. Oliveira, “Tutorial on the DAMOV Framework and Benchmarks,”
https://www.youtube.com/watch?v=GWideVyo0nM&t=8028s.

[195] N. Hajinazar and G. F. Oliveira, “SIMDRAM: A Framework for Bit-
Serial SIMD Processing using DRAM – Talk at ASPLOS 2021,” https:
//www.youtube.com/watch?v=lu3Br4-kySw.

6

http://yann.lecun.com/exdb/lenet
http://yann.lecun.com/exdb/lenet
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/
https://github.com/CMU-SAFARI/PiDRAM
https://github.com/CMU-SAFARI/PiDRAM
https://www.youtube.com/watch?v=HkMYuYMuZOg
https://www.youtube.com/watch?v=HkMYuYMuZOg
https://www.youtube.com/watch?v=GWideVyo0nM
https://www.youtube.com/watch?v=GWideVyo0nM&t=8028s
https://www.youtube.com/watch?v=lu3Br4-kySw
https://www.youtube.com/watch?v=lu3Br4-kySw

	1 Motivation & Problem
	2 DAMOV: Identifying and Characterizing Data Movement Bottlenecks
	3 SIMDRAM: Enabling Complex Operations using DRAM
	4 Discussion
	5 Conclusion & Future Work

