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1. Motivation & Problem
The increasing prevalence and growing size of data in modern
applications have led to high costs for computation in tradi-
tional processor-centric computing systems. Moving large
volumes of data between memory devices (e.g., DRAM) and
computing elements (e.g., CPUs, GPUs) across bandwidth-
limited memory channels can consume more than 60% of the
total energy in modern systems [1, 2]. To mitigate these costs,
the processing-in-memory (PIM) [1, 3–9] paradigm moves
computation closer to where the data resides, reducing (and
in some cases eliminating) the need to move data between
memory and the processor.

There are two main approaches to PIM [4]: (1) processing-
near-memory (PnM) [2, 10–77], where PIM logic is added
to the same die as memory or to the logic layer of 3D-
stacked memory [78–80]; and (2) processing-using-memory
(PuM) [44, 81–103], which uses the operational principles
of memory cells to perform computation (for example, by
exploiting DRAM’s analog operation to perform bulk bitwise
AND, OR, and NOT logic operations [83, 84, 87, 96, 97, 99]).

Many works from academia [2, 10–12, 15–23, 25, 31, 35–
39, 48, 81–83, 85, 86, 90, 99, 104–112] and industry [34,
41–43, 50–54] have shown the benefits of PnM and PuM for
a wide range of workloads from different domains. However,
fully adopting PIM in commercial systems is still very chal-
lenging due to the lack of tools and system support for PIM
architectures across the computer architecture stack [4], which
includes: (i) workload characterization methodologies and
benchmark suites targeting PIM architectures; (ii) frameworks
that can facilitate the implementation of complex operations
and algorithms using the underlying PIM primitives (e.g., sim-
ple PIM arithmetic operations [19], bulk bitwise Boolean in-
DRAM operations [83, 84, 92]); (iii) compiler support and
compiler optimizations targeting PIM architectures; (iv) oper-
ating system support for PIM-aware virtual memory, memory
management, data allocation and mapping; and (v) efficient
data coherence and consistency mechanisms.

Our goal in this work is to provide tools and system support
for PnM and PuM architectures, aiming to ease the adoption of
PIM in current and future systems. With this goal in mind, we
address two limitations of prior works related to (i) identifying
and characterizing workloads suitable for PnM offloading and
(ii) enabling complex operations in PuM architectures. First,
we develop a methodology, called DAMOV, that identifies
sources of data movement bottlenecks in applications and
associates such bottlenecks with PIM suitability. Second, we
propose an end-to-end framework, called SIMDRAM, that
enables the implementation of complex in-DRAM operations
transparently to the programmer.

2. DAMOV: Identifying and Characterizing
Data Movement Bottlenecks

DAMOV introduces the first rigorous methodology to charac-
terize memory-related data movement bottlenecks in modern
workloads and the first benchmark suite for data movement

related studies. We develop a new methodology to correlate
application characteristics with the primary sources of data
movement bottlenecks and to determine the potential benefits
of three example data movement mitigation mechanisms: (1)
a deep cache hierarchy, (2) a hardware prefetcher, and (3) a
general-purpose PnM architecture.

Our methodology has three steps. In Step 1 ( 1 in Figure 1),
we use a hardware profiling tool [113] to identify memory-
bound functions across applications. In Step 2 ( 2 ), we use an
architecture-independent profiling tool [114, 115] to collect
metrics that provide insights about the memory access behav-
ior of each function. In Step 3 ( 3 ), we collect architecture-
dependent metrics and analyze the performance and energy of
each function on our three data movement mitigation mech-
anisms. By combining the three steps, we systematically
classify the leading causes of data movement bottlenecks in
an application or function into different bottleneck classes.
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Figure 1: Overview of our three-step workload characteriza-
tion methodology.

Using this new methodology, we characterize 345 appli-
cations from a wide range of domains. Within these appli-
cations, we find (and fully characterize) 144 functions that
are memory-bound and significantly contribute to the overall
execution time. These functions are the core of our data move-
ment benchmark suite, called DAMOV [116]. Our analyses
reveal six new insights about the sources of data movement
bottlenecks and their relation to PnM:
1. Applications with high last-level cache misses per kilo-

instruction (MPKI) and low temporal locality are DRAM
bandwidth-bound. These applications benefit from the
large memory bandwidth available to the PnM system.

2. Applications with low last-level cache MPKI and low tem-
poral locality are DRAM latency-bound. These applications
do not benefit from L2/L3 caches. The PnM system im-
proves performance and energy efficiency by sending L1
misses directly to DRAM.

3. A second group of applications with low LLC MPKI and
low temporal locality are bottlenecked by L1/L2 cache ca-
pacity. These applications benefit from the PnM system at
low core counts. However, at high core counts (and thus
larger L1/L2 cache space), the caches capture most of the
data locality in these applications, decreasing the benefits
the PnM system provides. We make this observation using
a new metric that we develop, called last-to-first miss-ratio
(LFMR), which we define as the ratio between the number
of LLC misses and the total number of L1 cache misses.
We find that this metric accurately identifies how efficient
the cache hierarchy is in reducing data movement.
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4. Applications with high temporal locality and low LLC
MPKI are bottlenecked by L3 cache contention at high core
counts. In such cases, the PnM system provides a cost-
effective way to alleviate cache contention over increasing
the L3 cache capacity.

5. Applications with high temporal locality, low LLC MPKI,
and low arithmetic instruction (AI) are bottlenecked by the
L1 cache capacity. The three candidate data movement
mitigation mechanisms achieve similar performance and
energy consumption for these applications.

6. Applications with high temporal locality, low LLC MPKI,
and high AI are compute-bound. These applications benefit
from a deep cache hierarchy and hardware prefetchers, but
the PnM system degrades their performance.
We publicly release our 144 representative data movement

bottlenecked functions from 74 applications as the first open-
source benchmark suite for data movement, called DAMOV
benchmark suite, along with the complete source code for our
new characterization methodology and simulator [116]. For
more information on our extensive data movement bottleneck
characterization and on our DAMOV benchmark suite, along
with our detailed contributions (including four use cases of
our benchmark suite), please refer to our full paper [5, 117].

3. SIMDRAM: Enabling Complex Operations
using DRAM

A common approach for PuM architectures is to make use of
bulk bitwise computation. Many widely-used data-intensive
applications (e.g., databases, neural networks, graph analyt-
ics) heavily rely on a broad set of simple (e.g., AND, OR,
XOR) and complex (e.g., equality check, multiplication, ad-
dition) bitwise operations. Ambit [83, 84, 87, 96, 97, 99],
an in-DRAM PuM accelerator, proposes exploiting DRAM’s
analog operation to perform bulk bitwise majority-of-three
(MAJ) computation, which can be manipulated to perform
AND, OR, and NOT logic operations. Inspired by Ambit,
many prior works have explored DRAM and emerging non-
volatile memory (NVM) [118–154] designs that are capable
of performing in-memory bitwise operations [89, 92, 100, 106,
155–157]. However, a major shortcoming prevents these pro-
posals from becoming widely applicable: they support only
basic operations (e.g., Boolean operations, addition) and fall
short on flexibly supporting new and more complex operations.
Our goal is to design a framework that aids the adoption of
processing-using-DRAM by efficiently implementing com-
plex operations and providing the flexibility to support new
desired operations.

To this end, we propose SIMDRAM, the first end-to-end
framework for processing-using-DRAM. At its core, we build
the SIMDRAM framework around a DRAM substrate that
enables two previously-proposed techniques: (1) vertical
data layout in DRAM to support bit-shift operations, and (2)
majority-based logic. SIMDRAM consists of three key steps,
illustrated in Figure 2, to enable a desired operation in DRAM:
(1) building an efficient MAJ/NOT-based representation of the
desired operation, (2) mapping the operation input and output
operands to DRAM rows and to the required DRAM com-
mands that produce the desired operation, and (3) executing
the operation. We briefly describe these steps.
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Figure 2: Overview of the SIMDRAM framework.

The goal of the first step ( 1 in Figure 2a) is to use logic
optimization to minimize the number of DRAM row activa-
tions, and therefore the compute latency required to perform
a specific operation. Accordingly, for a desired computation,
the first step is to derive its optimized MAJ/NOT-based imple-
mentation from its AND/OR/NOT-based implementation.

The second step ( 2 in Figure 2a) translates the MAJ/NOT-
based implementation into DRAM row activations. This step
includes (1) mapping the operands to the designated rows in
DRAM, and (2) defining the sequence of DRAM row acti-
vations that are required to perform the computation. SIM-
DRAM chooses the operand-to-row mapping and the sequence
of DRAM row activations to minimize the number of DRAM
row activations required for a specific operation.

The third step ( 3 in Figure 2b) is to program the memory
controller to issue the sequence of DRAM row activations to
the appropriate rows in DRAM to perform the computation
of the operation from start to end. To this end, SIMDRAM
uses a control unit in the memory controller that transparently
executes the sequence of DRAM row activations for each
specific operation.
System Integration. To incorporate SIMDRAM into a real
system, we address two integration challenges as part of our
work: (1) managing memory with both vertical and horizontal
layouts in a system, and (2) exposing SIMDRAM functionality
to programmers and compilers. As part of the support for
system integration, we introduce two components.

First, SIMDRAM adds a transposition unit in the memory
controller that transforms the data layout from the conven-
tional horizontal layout to vertical layout (and vice versa),
allowing both layouts to coexist. Using the transposition unit,
SIMDRAM provides the ability to store only the data that
is required for in-DRAM computation in the vertical layout.
SIMDRAM maintains the horizontal layout for the rest of the
data and allows the CPU to read/write its operands from/to
DRAM in a horizontal layout and at full bandwidth. Second,
SIMDRAM extends the ISA to enable the user/compiler to
communicate with the SIMDRAM control unit.
Key Results. We demonstrate SIMDRAM’s functional-
ity using an example set of operations including (1) N-input
logic operations (e.g., AND/OR/XOR of more than 2 input
bits); (2) relational operations (e.g., equality/inequality check,
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greater than, maximum, minimum); (3) arithmetic operations
(e.g., addition, subtraction, multiplication, division); (4) pred-
ication (e.g., if-then-else); and (5) other complex operations
such as bitcount and ReLU [158].

We compare the benefits of SIMDRAM to different state-
of-the-art computing platforms (CPU, GPU, and Ambit [83,
84, 87, 96, 97, 99]). We comprehensively evaluate SIM-
DRAM’s reliability, area overhead, throughput, and energy
efficiency. We leverage the SIMDRAM framework to ac-
celerate seven application kernels from machine learning,
databases, and image processing (VGG-13 [159], VGG-
16 [159], LeNET [160], kNN [161], TPC-H [162], BitWeav-
ing [163], brightness [164]). Using a single DRAM bank,
SIMDRAM provides (1) 2.0× the throughput and 2.6× the
energy efficiency of Ambit [83], averaged across the 16 imple-
mented operations; and (2) 2.5× the performance of Ambit,
averaged across the seven application kernels. Compared to a
CPU and a high-end GPU, SIMDRAM using 16 DRAM banks
provides (1) 257× and 31× the energy efficiency, and 88×
and 5.8× the throughput of the CPU and GPU, respectively,
averaged across the 16 operations; and (2) 21× and 2.1×
the performance of the CPU and GPU, respectively, averaged
across the seven application kernels. SIMDRAM incurs no
additional area overhead on top of Ambit, and a total area over-
head of only 0.2% in a high-end CPU. We also evaluate the
reliability of SIMDRAM under different degrees of manufac-
turing process variation, and observe that it guarantees correct
operation as the DRAM process technology node scales down
to smaller sizes.

For more information on our SIMDRAM framework and
our extensive evaluation results (including a comparison to
an alternative framework for processing-using-cache architec-
tures), please refer to our full paper [165, 166].

4. Discussion
Few prior works tackle the challenge of providing end-to-end
support for PIM. We describe these works and their limitations
for in-DRAM computing.
Workload Characterization and Benchmark Suites for
PIM. We highlight two prior works, [167] and PrIM [41–
43] that also focus on characterizing workloads and providing
benchmark suites for PIM architectures. In [167], the au-
thors provide the first work that characterizes workloads for
PIM. They analyze the benefits a PIM architecture similar to
[71], where vector processing compute units are integrated
into the DDRx memory modules, provides for five applica-
tions. Even though [167] has a similar goal to DAMOV, it
understandably does not provide insights into modern data-
intensive applications and PIM architectures as it dates from
2001. The authors of [41–43] propose PrIM, a benchmark
suite of 16 workloads from different application domains (e.g.,
dense/sparse linear algebra, databases, data analytics, graph
processing, neural networks, bioinformatics, image process-
ing) tailored to fit the characteristics of a real PIM architecture
(i.e., the UPMEM-based PIM system [34]). PrIM is open-
source and publicly available at [168]. Unlike these prior
works, DAMOV is applicable to and can be used to study other
PIM architectures than processing-in/-near DRAM, including
processing-in/-near cache [68, 93–95, 169–171], processing-

in/-near storage [40, 172–181], and processing-in/-near emerg-
ing NVMs [81, 82, 90, 91, 100, 182, 183]. This is possible
since DAMOV’s methodology and benchmarks are mainly
concerned with broadly characterizing data movement bottle-
necks in an application, independent of the underlying PIM
architecture.
Frameworks for PIM. DualityCache [95] is an end-to-end
framework for in-cache computing, which executes a fixed
set of operations in a single-instruction multiple-thread (SIMT)
manner. Employing DualityCache in DRAM is not straight-
forward due to the fundamental differences between in-cache
computing and in-DRAM computing (e.g., the destructive be-
havior of DRAM operations and cost-sensitivity of DRAM
chips). Two prior works, Hyper-A [184] and IMP [185], pro-
pose frameworks for in-emerging-NVM computing. Since
Hyper-A and IMP target in-emerging-NVM substrates that
utilize different computing paradigms (e.g., associative pro-
cessing [186, 187]) or rely on particular structures of the NVM
array (such as analog-to-digital/digital-to-analog converters) to
perform computation, they are not applicable to an in-DRAM
substrate that performs bulk bitwise operations. Olgun et al.
propose the PiDRAM [188] framework, a flexible end-to-end
and open-source FPGA-based framework that enables system
integration studies and evaluation of in-DRAM computing
techniques (e.g., in-DRAM copy and initialization [86, 98]
and in-DRAM true random generation [108, 189, 190]) using
real unmodified DRAM chips. PiDRAM is publicly avail-
able at [191] and can be used to prototype our SIMDRAM
framework in a real system.

5. Conclusion & Future Work
This paper summarizes two of our recent efforts towards pro-
viding holistic system-level support for processing-in-memory
(PIM) systems. We provide (i) a methodology to identify
and characterize sources of data movement bottlenecks in a
workload that can enable the programmer to assess whether a
processing-near-memory (PnM) architecture can mitigate the
identified data movement bottlenecks; (ii) the first benchmark
suite (i.e., DAMOV) tailored for analyzing data movement
bottlenecks and effects of near-data processing; and (iii) an
end-to-end framework (i.e., SIMDRAM) that enables efficient
and programmer-transparent computation of a wide range of
arbitrary and complex operations by employing processing-
using-memory (PuM) in DRAM. We believe that DAMOV can
enable (1) simple and practical identification of PIM-suitable
workloads and functions, (2) a research substrate (with our
benchmark suite and simulator) for PIM-related architecture
and system studies. SIMDRAM can facilitate the broader
adoption of PuM architectures by more workloads and pro-
grammers. We hope that our work inspires future research
on system-level solutions and tools that can aid the research,
development, and implementation of PIM architectures.
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